Maths Progression

itent of the curriculum

At Woodseaves CE Academy School we follow the National Curriculum for mathematics. The National Curriculum aims to ensure that children:
 and accurately
2. reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language

 to our world and through a variety of fluency, reasoning and problem solving, children are given a chance to improve their resilience to enable them to work through challenging activities.

 consolidate their understanding, including through additional practice, before moving on

 range of mathematical resources and teach pupils to show their workings in a concrete fashion before establishing ways of pictorially and formally representing their understanding.

We provide our children with a variety of mathematical opportunities, which will enable them to make the connections needed to enjoy greater depth in learning;
 mathematical reasoning skills.

We use frequent recap and recall strategies (Daily Practice) to ensure that knowledge sticks.
At each stage of learning, pupils should be able to demonstrate a deep, conceptual understanding of the given topic and be able to build on this over time.

EYFS

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

Key Stage One

The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools].

At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money.

By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.

Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1.

		representations, and missing number problems such as $10+7=\quad-9$	including those involving numbers, quantities and measures applying their increasing knowledge of mental and written method		4.		
						5C5a Identify multiples and factors, including finding all factor pairs of a number and common factors of two numbers 5C5b Know and prime numbers, the vocabulary of composite (non-prime) numbers and 5C5c Establish whether a number up to 100 is prime and recall prime numbers up to 19 5C5d Recognise and use square numbers and cube numbers and the notation for squared (and cubed (${ }^{3}$)	$6 C 5$ Identify common factors, common multiples and prime numbers
			2C6 Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	3C6 Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	4C6a Recall multiplication and division facts for multiplication tables $\text { up to } 12 \times 12$ 4C6b Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers 4C6c Recognise and use factor pairs and commutativity in mental calculations	5C6a Multiply and divide numbers mentally drawing upon known facts 5C6b Multiply and divide whole numbers and those involving decimals by 10,100 and 1000	6 C6 Perform mental calculations, including with mixed operations and large numbers
			2 C7 Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals (=) signs	3C7 Write and calculate mathematical statements for multiplication using the multiplication tables that children know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods	4C7 Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	5C7a Multiply numbers up to 4 digits by a one or two-digit number using a formal written method, incluđing long multiplication for two digit numbers	6C7a Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
	Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally. (DM)	1C8 Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	2C7b Calculate mathematical statements for division within the multiplication tables and write them using the division (\because) and equals ($=$) signs	3C7b Write and calculate mathematical statements for division using the multiplication tables that children know, including for two-digit numbers divided by one-digit numbers, using mental and progressing to formal written methods	4C7b Divide numbers up to 3 digits by a one-digit number using the formal written method of short division	5C7b Divide numbers up to 4 digits by a one-digit number using the formal written method of short difision and interpret remainders appropriately for the context	6C7b Divide numbers up to 4 digits by a two digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context 6C7c Divide numbers up to 4 digits by a 2 digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
		$\sqrt{7}$	2C8 Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	$3 C 8$ Solve problems, including missing number problems, involving X and division, including integer scaling problems and correspondence problems in which n objects are connected to m objects	$4 C 8$ Solve problems involving X and + , including using the distributive law to multiply 2 digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	5C8a Solve problems hivolving multiplication and divisipn including using their knowledge of factors and multiples, squares, ànd cubes 5C8b Solve problems involving all 4 operations, combination of these, including understanding the meaning of the equals sign $5 C 8 \mathrm{Colve}$ problems involving multiplication and division including scaling by simplefrractions and problems involving simple rates	6 C8 Solve problems involving addition, subtraction, multiplication and division
			2C9a Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot 2C9b Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot				$6 C 9$ Use their knowledge of the order of operations to carry out calculations involving the four operations
Vocabulary	add, more, and make, sum, total altogether double one more, two more ... ten more how many more to make ...? how many more is ... than ...? how much more is ...? take away how many are left/left over? how many have gone? one less, two less, ten less ... how many fewer is ... than ...? how much less is ...? difference between, sharing doubling halving number patterns	addition, near double, half, halve, subtract, equals, is the same as, number bonds, missing number, multiplication, multiply, multiple, divide, division, dividing, array	groups of, times, repeated addition, divided by, share, share equally, groups, pairs, row, column, facts	hundreds boundary, factor, product, remainder	inverse, square, squared, cube, cubed,	tenths boundary,	

Number 3 Fractions, Decimals \& Percentages	Split objects into equal and unequal groups	1F1b Recognise, find and name a quarter as one of four equal parts of a object, shape or quantity	2F1b Write simple fractions [eg: $1 / 2$ of 6 $=3]$	3F1a Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 3F1b Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators 3F1c Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators	4F1 Count up and down in hundredths; recognise that hưdredths arise when dividing an object by a hundred and dividing tenths byten		
			252 Recognise the equivalence of $1 / 2$ and $2 / 4$	$3 F 2$ Recognise and show, using diagrams, equivalent fractions with small denominators	$4 F 2$ Recognise and show, using diagrams, families of common equivalent fractions	5F2a Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical stateements >1 as a mixed number eg: $2 / 5$ $+4 / 5=1 \frac{1}{5}$	6F2 Use common factors to simplify fractions; use common multiples to express fractions in the same denomination
			18	3F3 Compare and order unit fractions and fractions with the same denominators		5F3 Compare and order fractions whose denominators are all multiples of the same number	6F3 Compare and order fractions, including fractions >1
				3F4 Add and subtract fractions with the same denominator within one whole eg $5 / 7+1 / 7=6 / 7$	4F4 Add and subtract fractions with the same denominator	5F4 Add and subtract fractions with the same denominator and denominators that are multiples of the same number	6F4 Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
						555 Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	
					4F6a Recognise and write decimal equivalents to $1 / 4,1 / 2$ and $3 / 4$	5F6a Read and write decimal numbers as fractions [eg: $0.71={ }^{71} / 100$]	
					4F6b Recognise and write decimal equivalents of any number of tenths or hundredths	5F6b Recognise and use thousandths and relate them to tenths, fundredths and decimal equivalents	calculate decimal fraction equivalents (eg: 0.375) for a simple fraction [eg: $3 / 8$)
			\cdots	2	$4 F 7$ Round decimals with one decimal place to the nearest whole number	5F7 Round decimals with two decimal places to the nearest whole number and to one decimal place	
					4F8 Compare numbers with the same number of decimal places up to two decimal places	5 F8 Read, write, order and compare numbers with up to three decimal places	
					4F9 Find the effect of dividing a 1 - or 2 digit number by 10 and 100 , identifying		6F9a Identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places
					the value of the digits in the answer as ones, tenths and hundredths		6F9b Multiply one-digit numbers with up to two decimal places by whole numbers
							6F9c Use written division methods in cases where the answer has up to 2 -decimal places
				3F10 Solve problems that involve 3F1-3F4	4F10a Solve problems involving increasingly hardef fractions to cacculate quantities and fractions to divide quantities, including non-unit fractions where the answer is a whole number 4F10b Solve simple measurand and money problems involving fractions and decimals to two decimal places	5F10 Solve problems involving numbers up to three decimal places	6F10 Solve problems which require answers to be rounded to specified degrees of accuracy
						5F11 Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal	6F11 Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts
			\%		1	5 F12 Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5$ and $4 / 5$ and those fractions with a denominator of a multiple of 10 or 25	
Vocabulary	parts of a whole half quarter	fraction equal part equal grouping equal sharing, one of two equal parts	equivalent fractions, mixed number, numerator, denominator, one third	sixths, sevenths, eighths, tenths	hundredths, decimals, proportion,	proper fraction, improper fraction, reduced to, thousandths, percentage,	ratio,

		yesterday, tomorrow, morning,	-	-			
		1M4c Recognise and use language relating to dates, including days of the week, weeks, months and years	2M4c Know the number of minutes in an hour and the number of hours in a day	3M4c Tell and write the time from an analogue clock, including using Roman numerals from I to XII 3M4d Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock/a.m./p.m., morning, afternoon, noon and midnight 3M4e Know the number of seconds in a minute and the number of days in each month, year and leap year 3M4f Compare durations of events, [eg: to calculate the time taken by particular events or tasks]	4M4c Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days		
					4M5 Convert between different units of measurement [eg: kilometre to metre; hour to minute]	5M5 Convert between different units of metric measure [eg: kilometre and metre; céntimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]	6M5 Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation of up to three decimal places
						5M6 Understand ạnd use approximate equivalences between metric units and common imperial units such as inches, pounds and pints	6M6 Convert between miles and kilometres
				3M7 Measure the perimeter of simple 2-D shapes	4M7a Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	5M7a Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	
					4M7b Find the area of rectilinear shapes	5M7b Calculate and compare the area of rectangles (including squares), and including using standard units, square	6M7a Recognise that shapes with the same areas can have different perimeters and vice versa
						(m^{2}) and estimate the area pf irregular shapes	6M7b Calculate the area of parallelograms and triangles
							6M7c Recognise when it is possible to use the formulae for the area of shapes
						5M8 Estimate volume [eg using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [eg: using water]	6M8a Calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [eg: mm^{3} and km^{3}]
							6M8b Recognise when it is possible to use the formulae for the volume of shapes
				3M9a Add and subtract amounts of money to give change, using both $£$ and p in practical contexts		5M9a Use all four operảtions to solve problems involving measure [money] using decimal notation, including scaling	
			2M9 Solve simple problems in a practical context involving addition and	3M9b Add and subtract lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$)	4M9 Calculate different measures,	5M9b Use all four operations to solve problems involving measure [eg: length] using decimal notation, including scaling	6M9 Solve problems involving the calculation and conversion of units of
			subtraction of money of the same unit, including giving change	3M9c Add and subtract mass (kg/g)	including money in pounds and pence	5M9c Use all fout operations to solve problems involving measure [eg: mass] using decimal notation, including scaling	measure, using decimal notation up to three decimal places where appropriate
				3M9d Add and subtract volume / capacity (1/ml)		5M9d Use all four operations to solve problems involving measure [eg: volume] using decimal notation, including scaling	
Vocabulary	measure size compare guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as just over, just under metre length, height, width, depth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher ... and so on longest, shortest, tallest, highest ... and so on far, near, close weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest, scales	measurement, roughly, centimetre, ruler, metre stick, kilogram, litre, capacity, volume, more than, less than, quarter full, months, seasons, weekend, earlier, later, change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? total	measuring scale, further, furthest, tape measure, gram, millilitre, temperature, degree, contains, fortnight, minutes past, seconds, digital, analogue,	division, approximately, millimetre, kilometre, mile, distance apart, perimeter, centigrade, century, calendar, earliest, latest, am, pm, 12-hour/24hour	unit, standard unit, metric unit, breadth, edge, area, covers, square centimetre, mass, weights, measuring cylinder, leap year, millennium, noon, timetable, arrive, depart	imperial unit, square metre, square millimetre, pint, gallon, currency,	yard, foot, feet, inch, inches, circumference, tonne, pound, ounce, GMT, BST, profit, loss,
Geometry 1Shape	Select, rotate and manipulate shapes to develop spatial reasoning skills (DM)	1G1a Recognise and name common 2D shapes [eg: rectangles (including squares), circles and triangles	2G1a Compare and sort common 2-D shapes and everyday objects		\square		

	Select shapes appropriately: flat surfaces for building, a triangular prism for a roof, etc. (DM) Combine shapes to make new ones - an arch, a bigger triangle, etc. (DM)	1G1b Recognise and name common 3D shapes [eg: cuboids (including cubes), pyramids and spheres]	2G1b Compare and sort common 3-D shapes and everyday objects				
	Talk about and explore 2D shapes (for example, circles, rectangles, triangles) using informal and mathematical language: 'sides', 'corners'; 'straight', 'flat', 'round'. (DM)		2G2a Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line		4G2a Compare and classify geometric shapes, including quadrilaterals and triangles based on their properties and sizes	5G2a Use the properties of rectangles to deduce related facts and find missing lengths and angles	6G2a Compare and classify geometric shapes based on their properties and sizes
	Talk about and explore 3D shapes (for example cuboids) using informal and mathematical language: 'sides', 'corners'; 'straight', 'flat', 'round'. (DM)		2G2b Identify and describe the properties of 3-D shapes including the	3G2 Identify horizontal, vertical lines and pairs of perpendicular and parallel lines	4G2b Identify lines of symmetry in 2-D shapes presented in different orientations	5G2b Distinguish between regular and irregular polygons based on reasoning	6G2b Describe simple 3-D shapes
			number of edges, vertices and faces		4G2c Complete a simple symmetric figure with respect to a specific line of symmetry	about equal sides and angles	
	Compose and decompose shapes so that			3G3a Draw 2-D shapes		5G3b Identify 3-D shapes including	6G3a Draw 2-D shapes using given dimensions and angles
	shapes within it, just as numbers can. (DM)		of 3-D shapes,	3G3b Make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them		cubes and other cuboids, from 2-D representations	6G3b Recognise and build simple 3D shapes, including making nets
				3G4a Recognise that angles are a property of shape or a description of a turn		5G4a Know angles"are measured in degrees: estimate and compare acute, obtuse and reflex angles	6G4a Find unknown angles in any triangles, quadrilaterals and regular polygons
				3G4b Identify right angles, recognise that two right angles make a half- turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	4G4 Identify acute and obtuse angles and compare and order angles up to two right angles by size	$564 \mathrm{bldentify:}$ - angles at a point and one whole turn (total $\left.\bar{\beta} 60^{\circ}\right)$ - angles at a point on a astraight line and $a^{1 / 2}$ turn (total 180°) - other multiples of 90° 564 c Draw given angles and measure them in degrees	6G4b Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
							6G5 Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
Vocabulary	shape, pattern flat curved, straight round hollow, solid sort make, build, draw size	symmetry, cuboid, cylinder,	surface, line symmetry, circular, triangular, pentagon, hexagon, octagon	perimeter, pentagonal, hexagonal, octoagonal, quafrilateral, right-angled, parallel, perpendicular, hemisphere, prism	line, construct, sketch, centre, angle, square based, reflect, regular irregular, 2D, blong, equuilater, isosceles, scalene, heptagon, parallelogram, polygon, 3D, spherical, polyhedron	radius, diameter, congruent, axis of symmetry, quadrant, octagedron,	circumference, concentric, arc, net, open, closed, intersecting, intersection, plane, kite,
	Continue, copy and create repeating patterns. (DM)		2P1 Order and arrange combinations of mathematical objects in patterns and sequences				
Geometry 2 Position \& Direction	Understand position through words alone - for example, "The bag is under the table," - with no pointing. (DM) Describe a familiar route. (DM) Discuss routes and locations, using words like 'in front of' and 'behind'. (DM)	1 1P2 Describe position, directions and movement, including half, quarter and three-quarter turns	2P2 Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clock-wise and anticlockwise)		$4 \mathbf{P 2}$ Describe movements between positions as translations of a given unit to the left/right and up/down	5P2 Identify, describe and represent the position of a shape following a refection or translation, using the appropriate language, and know that the shape has'not changed	6P2 Draw and translate simple shapes on the co-ordinate plane, and reflect them in the axes
					4P3a Describe positions on a 2-D grid as co-ordinates in the first quadrant 4P3b Plot specified points and draw sides to complete a given polygon		6P3 Describe positions on the full coordinate grid (all four quadrants)
Vocabulary	position over, under above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge corner direction left, right up, down forwards, backwards, sideways	underneath, centre, journey, quarter turn, three-quarter turn,	route, higher, lower, clockwise, anticolockwise, right angle, straight line,	compass point, north, south, east, west, vertical, horizontal, diagonal, angle, acute, obtuse,	north-east, north-west, south-east, south-west, translate, translation, rotate, degree, reflection, ruler, compass,	coordinate, protractor,	reflex angle,
	Sort objects into groups by characteristics (e.g. by colour, size, shape)		251 Interpret and construct simple pictograms, tally charts, block diagrams and simple tables	351 Interpret and present data using bar charts, pictograms and tables	4S1 Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	551 Complete, read and interpret information in tables, including timetables	6S1 Interpret and construct pie charts and line graphs and use these to solve problems
Statistics			252a Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity 252b Ask and answer questions about totalling and comparing categorical data	$3 \mathbf{3} 2$ Solve one-step and two- step questions [eg: 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts, ... pictograms and tables	4S2 Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	552 Solve comparison, sum and difference problems using information presented in a line graph	

							6S3 Calculate and interpret the mean as an average
Vocabulary	count, sort, group, set list	vote, table	tally, graph, block graph, pictogram, represent, label, title, most popular, most common, least.	chart, bar chart, frequency, carroll diagram, venn diaram, axis, axes, diagram	survey, questionnaire, data,	database, bar line chart, line grapgh, maximum, minimum, outcome	pie chart, mean, statistics, distribution
Diversity	Focus on diversity through leading mathematicians, such as: Alan Turing, Nancy Grace Roman, Benjamin Manneker, John Nash Jr, Mary Cartwright, Johanna Lucht, Al-Khwarizmi, Katherine Johnson, Shakuntala Devi						
Cultural Capital Links Possibilities	Opportunities in the local area, museum trips, Maths Days, local/national competitions, discussion of mathematicians, numbers in the real world, opportunities to participate in real-life number situations (money in shops etc)						

